Select Page

Tracer Pebble Studies

Tracking the movement of material along coarse sediment beach frontages

An ESCP surveyor scanning the beach

An ESCP surveyor scanning the beach

The Eastern Solent Coastal Partnership (ESCP) has developed an innovative method of utilising radio-frequency identification (RFID) technology to track the movement of material along coarse sediment beach frontages.

The use of Tracer Pebbles as a method of measuring longshore sediment transport has been widely used and reported on in the coastal environment. Early methods of tracking beach sediment included using fluorescent material, resin shapes and copper cores and aluminium pebbles. More recently, the Radio Frequency Identification (RFID) technology has been used to accurately and efficiently monitor this movement.

The system comprises three main components; passive induced transponder (PIT) tags which broadcast a unique ID number when detected; an antenna used to scan the beach and a data logger used to store the ID number and recorded location.

The studies

In addition to the projects that have previously been carried out or are currently ongoing within east Solent, SCOPAC has been coordinating a number of Tracer Pebble projects across the region.

The aim of these studies is to build a database of information on the discrete sediment transport pathways at selected sites along the south coast, as well as validating the detailed knowledge that has previously been presented through projects such as the Sediment Transport Studies (SCOPAC, 2004; 2012).

study links will open at the ESCP website, in a new browser window

How do they work?

Small Radio Frequency Identification (RFID) tags are embedded within native pebbles collected from a site of interest and secured with a waterproof resin.

The RFID tags store a unique ID number which is logged, together with the GPS location by the specialist equipment during the retrieval surveys. The tags used are passive, meaning that they have no internal power source and can remain in situ for extended periods.

The pebbles are then deployed and re-surveyed at set intervals using a specialised scanner and a Global Positioning System (GPS).

Figure 1: Example of the range of Tracer Pebble sizes and the RFID tags.

Figure 1: Example of the range of Tracer Pebble sizes and the RFID tags.

How do we survey the beach?

We walk the beach with handheld antennas using one, or several surveyors, depending on the size of the beach to cover. The surveyors will sweep the beach in a linear pattern between mean low water spring (MLWS) and the beach crest. It may be necessary to include the back of the beach if there has been a particularly strong storm event causing overtopping and overwash.

The equipment will make an audible noise when a tag has been detected and will automatically log the tag number together with the GPS location. This means that we do not need to stop and obtain a visual identification of the pebble, however this can be done at a later date if further information on attrition rates is required.

Two ESCP surveyors at Hayling Island beach

Why are they needed?

The data collected has proven to be extremely useful, particularly for dynamic or highly managed beaches where elevation difference plots or aerial photography are not sufficient to identify net sediment movement following replenishment or recycling activities.

ESCP has successfully applied the method in conjunction with topographic data to understand how quickly and how far replenished material moves downdrift. Overlaying Tracer Pebble results onto a topographic difference plot for example, helps to visualise the discrete pathways which confirms the direction in which eroded material travels (during the period of the retrieval surveys). These results have helped to confirm the location of drift divides; convergence zones and net sediment drift patterns.

Figure 2: Topographic difference plot

Figure 2: Topographic difference plot, showing the changes in beach levels between 2004 and 2016. The red colour shows where the beach has lowered (erosion) and blue indicates areas that have built up (accretion)

Figure 3: As Figure 2 but overlaid with results from tracer retrieval surveys

Figure 3: As Figure 2 but overlaid with results from tracer retrieval surveys carried out between 2011 and 2016. Each coloured dot indicates a pebble found on the different survey dates.

How could Tracer Pebbles help you?

  • The method can help to highlight the local scale sediment transport pathways which directly affect the movement of material along the beach frontage;
  • The results provide a powerful tool to aid Beach Management Plans and the location of beach control structures;
  • Clearly presented results are a powerful tool for explaining sediment transport to council members and the general public;
  • The results have already proved useful in discussions with various stakeholders around the frontage, and the study has received widespread support and interest from Councillors and the public alike.

Key Facts

  • The tracers are not visible to the naked eye and therefore are less prone to disturbance from beach users;
  • The tracer tags use no power and can be left in the field for long periods of time;
  • The vertical detection range of the antenna can be up to 1m, which enables buried Tracer Pebbles to be identified;
  • After initial deployment a number of retrieval surveys are conducted over a period of weeks, months and years to allow long-term trends in sediment pathways to be identified;
  • Average detection rates over a two-week period are approximately 72%, with more than 95% of all tags being detected more than once;
  • After 5 months in the field tracers can disperse along 3 kilometres of beach.

 

Members of ESCP together with the Countryfile production team including presenter Ellie Harrison

Members of ESCP together with the Countryfile production team including presenter Ellie Harrison

Tracer Pebbles find fame!

ESCP and the Tracer Pebbles have been featured on BBC’s Countryfile. The ESCP team met Ellie Harrison on Hayling Island Beach to talk through the innovative method, and how it has helped us to understand the longshore drift patterns along the beach frontage.

The programme aired in May 2018: www.bbc.co.uk/programmes/b0b3jyf2

Members of ESCP together with the Countryfile production team including presenter Ellie Harrison

Tracer Pebbles find fame!

The ESCP and the Tracer Pebbles have been featured on BBC’s Countryfile. The ESCP team met Ellie Harrison on Hayling Island Beach to talk through the innovative method, and how it has helped us to understand the longshore drift patterns along the beach frontage.

The programme aired in May 2018: www.bbc.co.uk/programmes/b0b3jyf2

Further Information

There is growing interest in the method, with future Tracer Pebble deployments along the south coast of England being co-ordinated by SCOPAC.

If you are interested in using this method on your beaches, please contact the ESCP on info@escp.org.uk.

www.escp.org.uk/tracer-pebble-studies